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1. INTRODUCTION

In industrial applications machines are usually mounted on springs so as to isolate
them from the foundation. Generally, it is assumed that the vibration isolation
system consists of a rigid body representing the equipment connected to an
absolutely rigid foundation through an isolator which possesses resilient and
energy dissipation elements, and the rigid body is constrained to move along
vertical direction only [1].

For more general cases, six degrees of freedom are considered, and the six
simultaneous equations of motion with numerous terms are presented by
Himelblau and Rubin [2]. A more general case is studied by Yam et al. [3]. The
vibration of a rigid body supported by springs at multiple points and along
arbitrary directions can be analyzed using a three-step simple matrix calculation.

In this paper, a component synthesis method for vibration isolation design of
a massive rotating machine resiliently supported by an elastic structure is
presented.

This system can be considered as being composed of two parts, i.e., the machine
and the supporting structure connected through resilient elements.

The model of vibration calculation for this kind of coupled system is established
in this paper. Using this model, the sti!ness matrix for the connecting resilient
elements of any con"guration and location can be obtained by a simple and clear
procedure. Then, the equations of motion and the vibration characteristics of the
synthetical system can be obtained.

In general, in order to reduce the vibration transmissibility, springs with lower
sti!ness are used as the connecting elements between the machine and the elastic
supporting structure. For such a case, the natural frequencies of the coupled system
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will be distinguished into low band and high band. For machines of small size, the
supporting frame is comparatively sti!, and the calculation model presented in this
paper becomes the equations of motion for a resiliently supported rigid body with
six degrees of freedom. As the machine size becomes more and more larger, the
sti!ness of the frame will become relatively more and more weaker and the natural
frequencies in the high band will be more and more lower. When the lowest
frequency in the high band approaches the operating frequency of the rotating
machine, resonance of the supporting structure will be induced. As an example, this
component synthesis method is applied to the vibration isolation design of
a rolling-drum-type washing machine. In this example, the natural frequencies in
the low band are important to the operating behaviour under washing condition;
while the operation behaviour under the dehydrating condition is a!ected by both
the highest natural frequency in the low band and the lowest natural frequency in
the high band. In other words, in the design the dehydrating frequency ought to be
somewhat higher than the highest natural frequency in the low band and somewhat
lower than the lowest one in the high band to avoid resonance.

2. EQUATIONS OF MOTION OF THE COUPLED SYSTEM

The coupled system is considered as being composed of two parts, i.e., the part of
the massive machine which can be treated as a rigid body, and the elastic
supporting structure. These two parts are connected through resilient elements.

The motion of the rigid body is referred to as an inertial co-ordinate system
(O, X, >, Z), and another co-ordinate system (c, XM , >M , ZM ) is "xed on the machine
body with the origin at the mass center c (see Figure 1). When the machine body is
in equilibrium under the action of gravity alone, the two sets of co-ordinates are
coincident. The motion of the machine body is described by the displacements of
the body axes relative to the inertial axes. The translational displacements of the
mass centre of the machine body are x

c
, y

c
and z

c
in the X-, >- and Z-directions,

respectively, and the rotational displacements are characterized by the rotational
angles of the body axes XM , >M and ZM around the X-, >- and Z-axis, respectively, i.e.,
a, b, and c. These displacements are shown graphically in Figure 1. Then the small
motion of an arbitrary point b(xN

b
, yN

b
, zN

b
) on the machine body will be

X
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c
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Assume that three springs k
bx

, k
by

and k
bz

with their principal elastic axes parallel
to axes X, > and Z, respectively, are connected between point b on the machine
body and the elastic supporting structure, i.e., the frame. Let X

Ib
represent the



Figure 1. Inertial co-ordinate system and body "xed co-ordinate system.
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displacement vector of those points on the frame connected to k
bx

, k
by

and k
bz
,

then

X
Ib
"[x

Ib
y
Ib

z
Ib

]T (4)

and the force vector applied to the machine body produced by the springs
connected to point b is

F
b
"!K

b
(X

b
!X

Ib
), (5)

where
K

b
"diag [k

bx
k
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k
bz
]. (6)

When F
b

is transformed to the mass centre of the machine body, it becomes
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where F
cb

is the equivalent force vector applied to the mass centre of the machine
body, and it has six components, f

cx
represents the force along X-direction, ma is the

moment about X-axis, and so forth.
The equation of motion of the machine body is
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where M
c
is the inertia matrix of the machine body. Using a selection matrix S

Ib
(see

Appendix A) which selects vector X
Ib

from the displacement vector X
I
of the frame

structure, we have

X
Ib
"S

Ib
X

I
. (9)

Then, equation (8) can be rewritten as

M
c
XG

c
#LT

b
K

b
(L

b
X

c
!S

Ib
X

I
)"0. (10)

The equation of motion of the frame is

M
I
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I
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I
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I
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, (11)

where M
I

and K
I

are the inertia matrix and sti!ness matrix of the frame
respectively. F

Ib
is the force vector developed by the springs connected to the frame,

and
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Thus, equation (11) can be rewritten as follows:
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A combination of equations (10) and (12) yields the coupled equation of motion (13)
of the integrate system, in which only one point b on the machine body is connected
to the frame by springs k

bx
, k

by
and k

bz
:
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For a multiple-connected system
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where n is the number of connected points on the machine body.
Let

K"diag[K
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where su$xes 1, 2,2 , n mean that b"1, 2,2 , n. Then equation (14) is reduced to
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Thus the equation of motion of a coupled system connected at multiple points on
the machine body can be represented as follows:
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Using the modal co-ordinates of the frame,
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Substituting these equations into equation (16) and premultiplying the results by
[T]T, Equation (16) becomes
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where

M
r
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I
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r
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3. MORE GENERAL CASES

In general, the principal elastic axes of the connecting springs may not coincide
with the co-ordinate axes. In this case, K

b
is replaced by K3

b
, and
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b
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b
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, (18)
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where
Kjb"diag [k

bp
k
bq

k
br
], (19)
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D , (20)

where k
bp

is the sti!ness of a spring with principal elastic axis along the p-direction
and connected with the machine body at point b, and so forth; j

ij
is the cosine of the

angle between the elastic principal axis j of the spring connected at b and the
co-ordinate axis i. For example, j

xp
is the cosine of the angle between the X-axis

and the elastic principal axis of k
bp

(see Appendix B). Using equation (18), Kjb can
be transformed into the inertial co-ordinate system (O, X, >, Z) and becomes K3

b
[3]. The details are shown in the Appendix. The equation of motion of the coupled
system for the above-mentioned more general case can be obtained through
a similar procedure of derivation as
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where
K3 "diag[K3

1
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2
2 K3

n
] (22)

and the su$xes 1, 2,2 , n indicate that b"1, 2,2 , n.
Using modal co-ordinates for the frame, equation (21) is transformed into
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In equations (19) and (20), only three springs connected to point b on the machine
body are considered. The case for more than three springs can be treated in
a similar way. In these cases, there will be more rows in Kj

b
and K

b
, and the

calculation of the sti!ness matrix in equations (16) and (17) or equations (21) and
(23) will be slightly more complex, but the number of rows in K or K3 will remain
unchanged.

The natural frequency matrix and mode shape matrix of the coupled system
obtained from equations (16) or (21) are notated as follows:

X"diag [X
1

X
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2 X
N
], (24)
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where W
c
is the mode shape matrix of the machine body, and W

I
is that of the elastic

supporting structure. If equation (25) is the solution of equations (17) or (23), it is
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necessary to carry out the following transformation to convert the frame mode U
I

back to the inertial co-ordinate system, and

U
I
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I
. (26)

Thus, the mode shape matrix of the integrate system is

U"C
W
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I
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W
c
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I
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4. FREQUENCY CALCULATION OF A WASHING MACHINE

Due to the special functional requirement of a washing machine, it is desired to
make the natural frequencies of the system fall into two frequency bands, in order to
realize vibration isolation in both the washing and dehydrate stages.

The dynamic characteristics of a rolling-drum-type washing machine with 20 kg
capacity are calculated using the method introduced in this paper. The drum body
was treated as a rigid body, which is suspended in a frame by four springs (see
Figure 2). In order to reduce the vibration level, soft springs are used as the
suspension elements while the frame is made relatively sti!. In this case, the
distribution of nature frequencies of the integrated machine and suspension system
can be divided into low band and high band. In general, the washing frequency is
designed to be lower than the lowest frequency among the low-band natural
frequencies of the integrated machine system. The designed dehydrate frequency
will be between the low band and high band. It will be higher than the highest one
in the low band and will be lower than the lowest one in the high band. Modal
analysis of the frame is carried out using FEM software developed by ourselves.
The reliability of this software has been checked using the general-purpose
software. The discretization of the frame in the FEM calculation is shown in
Figure 2. Machine body of the washing machine.



Figure 3. Frame structure of the washing machine.

TABLE 1

Natural frequencies of the frame

No. 1 2 3 4 5 6 7

Freq. (Hz) 40)50 53)54 54)29 109)50 118)62 118)62 132)78

TABLE 2

Natural frequencies of the coupled system

No. 1 2 3 4 5 6 7 8 9 10 11

Freq. (Hz) 2)86 3)74 4)17 5)24 5)61 9)80 44)68 53)55 54)30 110)45 118)65
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Figure 3. The frame is made of structural steel with Young's modulus
E"200 GPa, the Poisson ratio l"0)3 and density o"7)8]103 kg/m3.

The natural frequencies and mode shapes of the whole system were obtained by
solving the eigenvalue problem of equation (17). As mentioned above, the
frequencies of the integrated system are distributed over the low band and high
band. Tables 1 and 2 show the natural frequencies of the frame and the coupled



TABLE 3

Natural frequencies obtained from calculations when the frame is treated as an
absolutely rigid foundation and the experimental results

No. 1 2 3 4 5 6

Cal. Freq. (Hz) 2)86 3)75 4)27 5)51 5)79 9)88
Exp. Freq. (Hz) 2)46 3)89 5)02 5)85 6)38 8)91
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system, respectively. It is found that the frequencies in the high band of Table 2 are
very close to those listed in Table 1.

Experiment measurements were carried out using B&K 4321 three-dimensional
and B&K 4370 one-dimensional accelerometers, a B &K 2635 charge ampli"er
and a HP5423 signal analysis system. Table 3 shows the calculated frequencies of
the coupled system when the frame is treated as an absolutely rigid foundation and
the experimental results of the frequencies in the low band. It can be seen that they
are very close to each other. In general, if the lowest natural frequency in the high
band and the highest one in the low band are in the ratio of 5 to 1 or even higher,
the modal frequencies in the low band and the high band can be calculated
separately. For the low band, the frame can be treated as a rigid foundation and
equations (17) and (23) are reduced to

M
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p
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p
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c
"0 (28)

and

M
c
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c
#LT

p
K3 L

p
X

c
"0 (29)

respectively. For the high band, only the frame is taken into consideration in the
calculation.

The vibrations of the whole system were measured for both washing and
dehydrating operations. Good vibration isolation e!ects were achieved. The
maximum vibration amplitude can meet the requirement of quality control of the
washing machine.

5. CONCLUSIONS

The modal synthesis method for vibration isolation design of a rolling-drum-
type washing machine with two critical frequencies, i.e., the washing frequency and
the dehydrating frequency, is discussed in this paper. The machine is treated as
a rigid body, which is suspended in an elastic frame by springs. The motion of the
machine is described by three translational displacements of the mass centre of the
machine, and three rotational displacements about the inertial axes. Modal
characteristics of the elastic frame are calculated using the "nite element method.
The modal synthesis method is adopted to derive the general equations of motion
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of the coupled system. These equations are general, because they can deal with any
con"guration and location of the suspended connecting springs.

Moreover, a relatively simple procedure for obtaining the sti!ness matrix of the
coupled system is given; the support of the system can be either solid or elastic. The
number of equations is much lower than that of existing methods. This proposed
approach has a clear concept and is easy to use by engineers. The readers may feel
somewhat confused about this method at "rst; however,they will "nd its merit
through a little more practice. The numerical calculation for the isolation design of
a rolling-drum-type washing machine is conducted; the results show good
agreement with those from experiments. The method proposed in this paper is also
suitable for vibration isolation design of various rotating machinery.
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APPENDIX A: SELECTION MATRIX S
Ib

There are two co-ordinate vectors:
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b
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]T related to point b on the rigid body,
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]T related to system I, i.e., the frame.

Assume that x
b
, y

b
and z

b
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and x

I5
through springs k
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, k
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, respectively, then the force vector acting on system I will be
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where S
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is called the selection matrix. Then we have
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APPENDIX B: STIFFNESS MATRIX FOR GENERAL CASE

In a general case, the connecting springs can be along any direction. Assume that
there are three springs connected at point b on the machine body; they are along bp,
bq, and br directions, respectively, and their principal sti!ness are k

bp
, k

bq
and k

br
,

respectively. Take k
bp

as an example. Assume that the angles between its principal
sti!ness direction and the three reference axes X, > and Z are h

xp
, h

yp
and h

zp
,

respectively, as shown in Figure 4(a). If point b has a negative displacement, say,
!Dy along the y-direction, it is equivalent to a positive displacement Dy at point
p along the y-direction (see Figure 4(b)). For small deformation, the elongation of
the spring due to this displacement is Dp"Dy cos h

yp
. When point p has

displacement components Dx, Dy and Dz along the X-, >- and Z-direction,
respectively, the elongation of spring bp should be (see Figure 4(b)),

Dp"Dx cos h
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where j
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, j

zp
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zp
.

The expressions for Dq and Dr can be obtained similarly; then, using equation
(20), we have
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Figure 4. Connecting spring along bp direction at point b.
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The tensile force due to the elongation of the springs is (see Figure 4(c))
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Dr H , (B3)

where

[Kjb]"diag [k
bp

k
bq

k
br
] . (19)

By resolving these force into the X-, >- and Z-directions (see Figure 4(c)), the
following can be obtained:
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Substituting equation (B2) into equation (B3) and then into equation (B5), we have
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where
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APPENDIX C: NOMENCLATURE

(O, X, >, Z) inertial reference co-ordinate system
(c, XM , >M , ZM ) co-ordinate system "xed on the massive machine body
b(xN

b
, yN

b
, zN

b
) an arbitrary point b on the machine body with position co-ordinates

(xN
b
, yN

b
, zN

b
)

F
b

force vector applied at point b
F
cb

force vector applied at the mass centre of the machine body
K

b
sti!ness matrix of the resilient elements connected to point b

K
I

sti!ness matrix of the supporting elastic structure
L
b

matrix of co-ordinate transformation
S
Ib

selection matrix which selects vector X
Ib

from the displacement vector X
IM

c
inertia matrix of the machine body

M
I

inertia matrix of the supporting elastic structure
X

b
displacement vector of point b

X
c

displacement vector of the mass centre of the machine body
X

I
displacement vector of the supporting elastic structure

X
Ib

displacement vector of the points on the elastic structure connected to
point b through resilient elements
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